login
A259455
n Sum_n Sum_n Sum_n.
1
1, 30, 270, 1400, 5250, 15876, 41160, 95040, 200475, 393250, 726726, 1277640, 2153060, 3498600, 5508000, 8434176, 12601845, 18421830, 26407150, 37191000, 51546726, 70409900, 94902600, 126360000, 166359375, 216751626, 279695430, 357694120, 453635400, 570834000
OFFSET
1,2
COMMENTS
See the reference for an explanation of the rather cryptic definition.
LINKS
C. Krishnamachari, The operator (xD)^n, J. Indian Math. Soc., 15 (1923),3-4. [Annotated scanned copy]
FORMULA
From Alois P. Heinz, Jul 04 2015: (Start)
G.f.: (24*x^3+58*x^2+22*x+1)*x/(x-1)^8.
a(n) = n^3*(n+3)*(n+2)*(n+1)^2/48.
a(n) = n*Stirling2(n+3,n). (End)
MAPLE
a:= n-> n^3*(n+3)*(n+2)*(n+1)^2/48:
seq(a(n), n=1..40); # Alois P. Heinz, Jul 04 2015
CROSSREFS
This is the seventh sequence in the sequence A000027, A000217, A002411, A001296, A108650, A001297, ...
Sequence in context: A053358 A163667 A214944 * A270852 A229427 A113754
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 30 2015
EXTENSIONS
More terms from Alois P. Heinz, Jul 04 2015
STATUS
approved