login
A259451
a(n) = n^2*Fibonacci(n).
3
0, 1, 4, 18, 48, 125, 288, 637, 1344, 2754, 5500, 10769, 20736, 39377, 73892, 137250, 252672, 461533, 837216, 1509341, 2706000, 4827186, 8572124, 15159553, 26707968, 46890625, 82061668, 143188722, 249163824, 432466589, 748836000, 1293764509, 2230588416, 3838265442, 6592537372, 11303644625, 19349736192
OFFSET
0,3
FORMULA
From Colin Barker, Jun 29 2015: (Start)
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6).
G.f.: -x*(x^4 - x^3 + 6*x^2 + x + 1)/(x^2 + x - 1)^3. (End)
E.g.f.: exp(x/2)*x*(sqrt(5)*(1 + x)*cosh(sqrt(5)*x/2) + (1 + 3*x)*sinh(sqrt(5)*x/2))/sqrt(5). - Stefano Spezia, Mar 04 2023
MAPLE
a:= n-> n^2*(<<1|1>, <1|0>>^n)[1, 2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jun 30 2015
MATHEMATICA
a[n_] := n^2 MatrixPower[{{1, 1}, {1, 0}}, n][[1, 2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 14 2016, after Alois P. Heinz *)
PROG
(PARI) concat(0, Vec(-x*(x^4-x^3+6*x^2+x+1)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Jun 29 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 27 2015
STATUS
approved