login
A259415
Triangular numbers (A000217) that are the sum of seventeen consecutive triangular numbers.
6
1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130, 172110498456, 463127571831, 37515654714891, 100949879501796, 749369070309030, 2016457340944761, 163343152011830505, 439535752164830646, 3262752760014579156
OFFSET
1,1
FORMULA
G.f.: -51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)).
EXAMPLE
1326 is in the sequence because T(51) = 1326 = 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 = T(3) + ... + T(19).
MATHEMATICA
LinearRecurrence[{1, 0, 0, 4354, -4354, 0, 0, -1, 1}, {1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
Module[{nn=10^6}, Select[Total/@Partition[Accumulate[Range[nn]], 17, 1], OddQ[ Sqrt[8#+1]]&]] (* Harvey P. Dale, Mar 19 2023 *)
PROG
(PARI) Vec(-51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)) + O(x^30))
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 26 2015
STATUS
approved