login
A259369
a(n) = 1 + sigma(n)^3 + sigma(n)^6.
3
3, 757, 4161, 117993, 46873, 2987713, 262657, 11394001, 4829007, 34018057, 2987713, 481912257, 7532281, 191116801, 191116801, 887533473, 34018057, 3518803081, 64008001, 5489105833, 1073774593, 2176828993, 191116801, 46656216001, 887533473, 5489105833
OFFSET
1,1
FORMULA
a(n) = 1 + A000203(n)^3 + A000203(n)^6.
a(n) = A060883(A000203(n)). - Michel Marcus, Jun 25 2015
MAPLE
with(numtheory): A259369:=n->1+sigma(n)^3+sigma(n)^6: seq(A259369(n), n=1..40); # Wesley Ivan Hurt, Jun 29 2015
MATHEMATICA
Table[1 + DivisorSigma[1, n]^3 + DivisorSigma[1, n]^6, {n, 10000}]
Table[Cyclotomic[9, DivisorSigma[1, n]], {n, 10000}]
PROG
(PARI) a(n) = polcyclo(9, sigma(n)) \\ Michel Marcus, Jun 25 2015
(Magma) [1+SumOfDivisors(n)^3+ SumOfDivisors(n)^6: n in [1..50]]; // Vincenzo Librandi, Jun 26 2015
CROSSREFS
Cf. A000203 (sum of divisors of n), A060883 (n^6 + n^3 + 1).
Cf. A259370 (indices of primes in this sequence), A259371 (corresponding primes).
Sequence in context: A119264 A307926 A172895 * A259371 A294794 A293252
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 25 2015
STATUS
approved