%I #51 Jul 18 2023 09:50:25
%S 1990586014,1994837494,2129658986,2341714794,2428906514,2963553594,
%T 3297066410,3353808094,3373085990,3623442746,3659230730,3809238770,
%U 3967387346,4058711734,4144727994,4196154390,4502893746,4555267690,4653623534
%N Numbers n such that n-1, n, and n+1 are all products of 6 distinct primes (i.e. belong to A067885).
%C A subsequence of A169834 and A067885.
%C The rudimentary method employed by the PARI program below reaches the limit of its usefulness here. Contrast it with the method required for A259350, which is over 4.5 orders of magnitude faster than the analog of this (and may still be some distance best).
%C a(1)=A093550(6) (that sequence's 5th term, with offset 2). The program arbitrarily makes use of this knowledge, but will run (slower) without it.
%H Giovanni Resta, <a href="/A259349/b259349.txt">Table of n, a(n) for n = 1..10000</a>
%F {n: A001221(n-1) = A001221(n) = A001221(n+1) = A001222(n-1) = A001222(n) = A001222(n+1) = 6}. - _R. J. Mathar_, Jul 18 2023
%e 1990586013 = 3*13*29*67*109*241,
%e 1990586014 = 2*23*37*43*59*461, and
%e 1990586015 = 5*11*17*19*89*1259; and no smaller trio of this kind exists, making the middle value a(1).
%o (PARI)
%o {
%o \\Program initialized with known a(1).\\
%o \\The purpose of vector s and value u\\
%o \\is to skip bad values modulo 36.\\
%o k=1990586014;s=[4,4,8,8,8,4];u=1;
%o while(1,
%o if(issquarefree(k),
%o if(issquarefree(k-1),
%o if(issquarefree(k+1),
%o if(omega(k)==6,
%o if(omega(k-1)==6,
%o if(omega(k+1)==6,
%o print1(k" ")))))));
%o k+=s[u];if(u==6,u=1,u++))
%o }
%Y Cf. A093550, A169834, A364265, A248201, A248202, A248203, A248204, A259350, A259801.
%Y For products of 1, 2, 3, 4, 5, and 6 distinct primes see A000040, A006881, A007304, A046386, A046387, and A067885, resp.
%Y See A364265 for a closely related sequence. - _N. J. A. Sloane_, Jul 18 2023
%K nonn
%O 1,1
%A _James G. Merickel_, Jun 24 2015