login
A259308
a(n) = 1 + sigma(n)^4.
3
2, 82, 257, 2402, 1297, 20737, 4097, 50626, 28562, 104977, 20737, 614657, 38417, 331777, 331777, 923522, 104977, 2313442, 160001, 3111697, 1048577, 1679617, 331777, 12960001, 923522, 3111697, 2560001, 9834497, 810001, 26873857, 1048577, 15752962, 5308417
OFFSET
1,1
FORMULA
a(n) = 1 + A000203(n)^4.
a(n) = A019326(A000203(n)). - Michel Marcus, Jun 24 2015
MAPLE
with(numtheory): A259308:=n->1+sigma(n)^4: seq(A259308(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
MATHEMATICA
Table[1 + DivisorSigma[1, n]^4, {n, 10000}]
Table[Cyclotomic[8, DivisorSigma[1, n]], {n, 10000}]
PROG
(Magma) [(1 + SumOfDivisors(n)^4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2015
CROSSREFS
Cf. A000203 (sum of divisors of n).
Cf. A259309 (indices of primes in this sequence), A259310 (corresponding primes).
Sequence in context: A230398 A120826 A343588 * A202965 A307583 A061994
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 24 2015
STATUS
approved