login
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0001 0101 or 0111
9

%I #4 Jun 23 2015 13:46:23

%S 10,26,26,66,94,66,170,322,322,170,434,1134,1460,1134,434,1114,3938,

%T 6870,6870,3938,1114,2850,13774,31774,43870,31774,13774,2850,7306,

%U 48002,148296,273686,273686,148296,48002,7306,18706,167598,688966,1729342

%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0001 0101 or 0111

%C Table starts

%C ....10......26.......66........170..........434..........1114............2850

%C ....26......94......322.......1134.........3938.........13774...........48002

%C ....66.....322.....1460.......6870........31774........148296..........688966

%C ...170....1134.....6870......43870.......273686.......1729342........10862998

%C ...434....3938....31774.....273686......2293928......19528726.......165147350

%C ..1114...13774...148296....1729342.....19528726.....224879224......2569298018

%C ..2850...48002...688966...10862998....165147350....2569298018.....39630793526

%C ..7306..167598..3208946...68457998...1402044186...29500968894....614892766122

%C .18706..584610.14925572..430748742..11882217182..338055313800...9520588610288

%C .47930.2040206.69477150.2712658334.100805628896.3878896990174.147638975405998

%H R. H. Hardin, <a href="/A259297/b259297.txt">Table of n, a(n) for n = 1..364</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +4*a(n-2)

%F k=2: a(n) = 3*a(n-1) +4*a(n-2) -8*a(n-3)

%F k=3: a(n) = 2*a(n-1) +18*a(n-2) -13*a(n-3) -70*a(n-4) +24*a(n-5) +64*a(n-6)

%F k=4: [order 9]

%F k=5: [order 20]

%F k=6: [order 36]

%F k=7: [order 72]

%e Some solutions for n=4 k=4

%e ..0..0..1..0..0....0..0..1..1..1....0..0..0..0..1....0..1..0..0..0

%e ..1..0..0..1..0....0..1..0..1..0....0..1..0..1..0....1..0..1..0..1

%e ..0..0..1..1..1....1..0..1..1..1....1..1..1..0..1....0..0..0..1..1

%e ..1..0..0..1..0....1..1..0..1..0....0..1..0..0..0....1..0..1..0..1

%e ..0..1..0..0..1....0..1..1..0..1....0..0..1..0..1....0..1..1..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jun 23 2015