login
A259260
With a(1) = 1, a(n) is the smallest number not already in the sequence such that the arithmetic mean of two neighboring terms is a square.
8
1, 7, 11, 21, 29, 3, 5, 13, 19, 31, 41, 9, 23, 27, 45, 53, 75, 87, 113, 15, 17, 33, 39, 59, 69, 93, 35, 37, 61, 67, 95, 105, 57, 71, 91, 109, 133, 155, 183, 209, 79, 49, 151, 137, 25, 47, 51, 77, 85, 43, 55, 73, 89, 111, 131, 157, 181, 107, 135, 65, 63, 99, 101, 141, 147, 191, 97, 103, 139, 149, 189, 203, 247, 145
OFFSET
1,2
COMMENTS
Conjectured to be a permutation of the odd numbers.
A259602(n) = (a(n) + a(n+1)) / 2; a(A259526(n)) = 2*n-1. - Reinhard Zumkeller, Jun 29 2015
LINKS
MATHEMATICA
s={1}; Do[n = Last@ s; a=2; While[(b = 2*a^2 - n) <= 0 || MemberQ[s, b], a++]; AppendTo[s, b], {100}]; s (* Giovanni Resta, Jun 23 2015 *)
PROG
(PARI) v=[1]; n=1; while(#v<100, s=(n+v[#v])/2; if(type(s)=="t_INT", if(issquare(s)&&!vecsearch(vecsort(v), n), v=concat(v, n); n=0)); n++); v
(Haskell)
import Data.List (delete)
a259260 n = a259260_list !! (n-1)
a259260_list = 1 : f 1 [3, 5 ..] where
f x zs = g zs where
g (y:ys) = if a010052 ((x + y) `div` 2) == 1
then y : f y (delete y zs) else g ys
-- Reinhard Zumkeller, Jun 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 22 2015
STATUS
approved