login
A259187
Primes p such that both p and p^2 are distinct-digit numbers.
1
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 43, 53, 59, 61, 71, 73, 79, 89, 137, 179, 193, 269, 281, 367, 397, 463, 487, 509, 571, 593, 647, 709, 829, 839, 1307, 1873, 2069, 2731, 2801, 3041, 4157, 4967, 4987, 6043, 7549, 7621, 8623, 21397
OFFSET
1,1
COMMENTS
Corresponding squares are 4, 9, 25, 49, 169, 289, 361, 529, 841, 961, 1369, 1849, 2809, 3481, 3721, 5041, 5329, 6241, 7921, 18769, 32041, 37249, 72361, 78961, 134689, 157609, 214369, 237169, 259081, 326041, 351649, 418609, 502681, 687241, 703921, 1708249, 3508129, 4280761, 7458361, 7845601, 9247681, 17280649, 24671089, 24870169, 36517849, 56987401, 58079641, 74356129, 457831609 (subsequence of A078255).
MATHEMATICA
Select[Prime[Range[2500]], Max[DigitCount[#]]<2&&Max[DigitCount[#^2]]<2&] (* Harvey P. Dale, May 25 2020 *)
CROSSREFS
Subsequence of A029743 and of A119509. Cf. A078255.
Sequence in context: A040169 A040165 A162950 * A040972 A040161 A175438
KEYWORD
base,nonn,fini,full
AUTHOR
Zak Seidov, Jun 20 2015
STATUS
approved