

A259184


a(n) = 1  sigma(n) + sigma(n)^2.


3



1, 7, 13, 43, 31, 133, 57, 211, 157, 307, 133, 757, 183, 553, 553, 931, 307, 1483, 381, 1723, 993, 1261, 553, 3541, 931, 1723, 1561, 3081, 871, 5113, 993, 3907, 2257, 2863, 2257, 8191, 1407, 3541, 3081, 8011, 1723, 9121, 1893, 6973, 6007, 5113, 2257, 15253
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Robert Price, Table of n, a(n) for n = 1..10000
OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)


FORMULA

a(n) = 1  A000203(n) + A000203(n)^2.
a(n) = 1  A000203(n) + A072861(n).  Omar E. Pol, Jun 20 2015
a(n) = A002061(A000203(n)).  Michel Marcus, Jun 25 2015


MAPLE

with(numtheory): A259184:=n>1sigma(n)+sigma(n)^2: seq(A259184(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015


MATHEMATICA

Table[1  DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}]


PROG

(PARI) a(n) = polcyclo(6, sigma(n)); \\ Michel Marcus, Jun 25 2015


CROSSREFS

Cf. A000203 (sum of divisors of n).
Cf. A259185 (indices of primes in this sequence), A259186 (corresponding primes).
Sequence in context: A134854 A097444 A241718 * A259186 A151781 A224502
Adjacent sequences: A259181 A259182 A259183 * A259185 A259186 A259187


KEYWORD

easy,nonn


AUTHOR

Robert Price, Jun 20 2015


STATUS

approved



