login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259184 a(n) = 1 - sigma(n) + sigma(n)^2. 3
1, 7, 13, 43, 31, 133, 57, 211, 157, 307, 133, 757, 183, 553, 553, 931, 307, 1483, 381, 1723, 993, 1261, 553, 3541, 931, 1723, 1561, 3081, 871, 5113, 993, 3907, 2257, 2863, 2257, 8191, 1407, 3541, 3081, 8011, 1723, 9121, 1893, 6973, 6007, 5113, 2257, 15253 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Price, Table of n, a(n) for n = 1..10000

OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)

FORMULA

a(n) = 1 - A000203(n) + A000203(n)^2.

a(n) = 1 - A000203(n) + A072861(n). - Omar E. Pol, Jun 20 2015

a(n) = A002061(A000203(n)). - Michel Marcus, Jun 25 2015

MAPLE

with(numtheory): A259184:=n->1-sigma(n)+sigma(n)^2: seq(A259184(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015

MATHEMATICA

Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]

Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}]

PROG

(PARI) a(n) = polcyclo(6, sigma(n)); \\ Michel Marcus, Jun 25 2015

CROSSREFS

Cf. A000203 (sum of divisors of n).

Cf. A259185 (indices of primes in this sequence), A259186 (corresponding primes).

Sequence in context: A134854 A097444 A241718 * A259186 A151781 A224502

Adjacent sequences:  A259181 A259182 A259183 * A259185 A259186 A259187

KEYWORD

easy,nonn

AUTHOR

Robert Price, Jun 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 23:44 EST 2019. Contains 329945 sequences. (Running on oeis4.)