login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259150 Decimal expansion of phi(exp(-4*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function. 15
9, 9, 9, 9, 9, 6, 5, 1, 2, 6, 4, 5, 4, 8, 2, 2, 3, 4, 2, 9, 5, 0, 9, 8, 9, 1, 6, 8, 5, 2, 1, 1, 9, 2, 4, 7, 6, 5, 7, 5, 0, 9, 7, 8, 9, 3, 2, 6, 3, 4, 5, 8, 4, 8, 4, 4, 7, 7, 3, 2, 6, 9, 1, 0, 0, 4, 7, 2, 0, 1, 5, 2, 5, 7, 6, 7, 4, 4, 8, 2, 0, 3, 2, 6, 8, 9, 6, 2, 4, 9, 7, 3, 0, 1, 1, 9, 7, 2, 8, 1, 0, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..102.

Istvan Mezo, Several special values of Jacobi theta functions arXiv:1106.2703v3 [math.CA] 24 Sep 2013

Eric Weisstein's MathWorld, Infinite Product

Eric Weisstein's MathWorld, Jacobi Theta Functions

Eric Weisstein's MathWorld, q-Pochhammer Symbol

Wikipedia, Euler function

FORMULA

phi(q) = QPochhammer(q,q) = (q;q)_infinity.

phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.

phi(exp(-4*Pi)) = exp(Pi/6)*Gamma(1/4)/(2^(11/8)*Pi^(3/4)).

A259150 = A259148 * exp(Pi/8)/sqrt(2). - Vaclav Kotesovec, Jul 03 2017

EXAMPLE

0.99999651264548223429509891685211924765750978932634584844773269100472...

MATHEMATICA

phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-4*Pi]], 10, 103] // First

CROSSREFS

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A292905 phi(exp(-5*Pi)), A259151 phi(exp(-8*Pi)), A292864 phi(exp(-16*Pi)).

Cf. A000706, A292822, A292826.

Sequence in context: A231984 A288238 A100547 * A292826 A290665 A091668

Adjacent sequences:  A259147 A259148 A259149 * A259151 A259152 A259153

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jun 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 16:30 EST 2020. Contains 332078 sequences. (Running on oeis4.)