The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259150 Decimal expansion of phi(exp(-4*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function. 15
 9, 9, 9, 9, 9, 6, 5, 1, 2, 6, 4, 5, 4, 8, 2, 2, 3, 4, 2, 9, 5, 0, 9, 8, 9, 1, 6, 8, 5, 2, 1, 1, 9, 2, 4, 7, 6, 5, 7, 5, 0, 9, 7, 8, 9, 3, 2, 6, 3, 4, 5, 8, 4, 8, 4, 4, 7, 7, 3, 2, 6, 9, 1, 0, 0, 4, 7, 2, 0, 1, 5, 2, 5, 7, 6, 7, 4, 4, 8, 2, 0, 3, 2, 6, 8, 9, 6, 2, 4, 9, 7, 3, 0, 1, 1, 9, 7, 2, 8, 1, 0, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Istvan Mezo, Several special values of Jacobi theta functions arXiv:1106.2703v3 [math.CA] 24 Sep 2013 Eric Weisstein's MathWorld, Infinite Product Eric Weisstein's MathWorld, Jacobi Theta Functions Eric Weisstein's MathWorld, q-Pochhammer Symbol Wikipedia, Euler function FORMULA phi(q) = QPochhammer(q,q) = (q;q)_infinity. phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u. phi(exp(-4*Pi)) = exp(Pi/6)*Gamma(1/4)/(2^(11/8)*Pi^(3/4)). A259150 = A259148 * exp(Pi/8)/sqrt(2). - Vaclav Kotesovec, Jul 03 2017 EXAMPLE 0.99999651264548223429509891685211924765750978932634584844773269100472... MATHEMATICA phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-4*Pi]], 10, 103] // First CROSSREFS Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A292905 phi(exp(-5*Pi)), A259151 phi(exp(-8*Pi)), A292864 phi(exp(-16*Pi)). Cf. A000706, A292822, A292826. Sequence in context: A231984 A288238 A100547 * A292826 A290665 A091668 Adjacent sequences:  A259147 A259148 A259149 * A259151 A259152 A259153 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jun 19 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 16:30 EST 2020. Contains 332078 sequences. (Running on oeis4.)