%I #10 Jun 29 2015 12:52:43
%S 366,663,3245,3685,5423,5863,8178,8718,14269,15167,16237,18449,18977,
%T 36679,73261,76151,77981,94481,96241,97663,140941,149041,150251,
%U 152051,196891,198691,302363,308459,319853,335148,358913,363203,841533,921239,932129,954803,958099,990859
%N Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.
%F Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.
%e 366' = 311 = 663';
%e 3245' = 999 = 5423'; etc.
%p with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
%p for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
%p od; y; end: P:=proc(q) local a,b,p,n;
%p for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
%p b:=T(n)*add(op(2,p)/op(1,p),p=ifactors(T(n))[2]);
%p if a=b then print(n); fi; fi; fi; od; end: P(10^9);
%Y Cf. A003415, A004086, A085329, A097647.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Jun 18 2015