login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n. 0
366, 663, 3245, 3685, 5423, 5863, 8178, 8718, 14269, 15167, 16237, 18449, 18977, 36679, 73261, 76151, 77981, 94481, 96241, 97663, 140941, 149041, 150251, 152051, 196891, 198691, 302363, 308459, 319853, 335148, 358913, 363203, 841533, 921239, 932129, 954803, 958099, 990859 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..38.

FORMULA

Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.

EXAMPLE

366' = 311 = 663';

3245' = 999 = 5423'; etc.

MAPLE

with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;

for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);

od; y; end: P:=proc(q) local a, b, p, n;

for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);

b:=T(n)*add(op(2, p)/op(1, p), p=ifactors(T(n))[2]);

if a=b then print(n); fi; fi; fi; od; end: P(10^9);

CROSSREFS

Cf. A003415, A004086, A085329, A097647.

Sequence in context: A258485 A073305 A248552 * A219960 A033174 A249704

Adjacent sequences:  A259074 A259075 A259076 * A259078 A259079 A259080

KEYWORD

nonn,base

AUTHOR

Paolo P. Lava, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)