login
A259074
Triangle T(n,k) = Sum_{j=0..(n-k)/3} C(n-3*j-1,k-1)*C(n-k-3*j,j).
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 4, 6, 4, 1, 3, 7, 10, 10, 5, 1, 4, 12, 18, 20, 15, 6, 1, 5, 19, 33, 39, 35, 21, 7, 1, 7, 28, 58, 76, 75, 56, 28, 8, 1, 10, 42, 96, 144, 156, 132, 84, 36, 9, 1, 14, 64, 156, 260, 315, 294, 217, 120, 45, 10, 1, 19, 97, 253, 455, 610, 630, 518, 338, 165, 55, 11, 1
OFFSET
1,5
FORMULA
G.f.: (x*y)/(1-x-x^4-x*y).
EXAMPLE
[1]
[1,1]
[1,2,1]
[1,3,3,1]
[2,4,6,4,1]
[3,7,10,10,5,1]
MATHEMATICA
Table[Sum[Binomial[n - 3*j - 1, k - 1] Binomial[n - k - 3*j, j], {j, 0, (n - k)/3}], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)
PROG
(Maxima) T(n, k):=sum(binomial(n-3*j-1, k-1)*binomial(n-k-3*j, j), j, 0, (n-k)/3);
CROSSREFS
Column k=1 gives A003269, column k=2 A292324.
Row sums give A008999(n-1) for n>0.
Sequence in context: A273108 A306405 A114162 * A162981 A297359 A338291
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Jun 18 2015
STATUS
approved