This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259036 Smallest divisor of n^2+1 >= sqrt(n^2+1). 0
 1, 2, 5, 5, 17, 13, 37, 10, 13, 41, 101, 61, 29, 17, 197, 113, 257, 29, 25, 181, 401, 26, 97, 53, 577, 313, 677, 73, 157, 421, 53, 37, 41, 109, 89, 613, 1297, 137, 85, 761, 1601, 58, 353, 50, 149, 1013, 73, 65, 461, 1201, 61, 1301, 541, 281, 2917, 89, 3137, 65 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Subsequence of A033677. a(n) = n^2+1 if n^2+1 is prime (see A005574) or n=0. - Michel Marcus, Jul 01 2015 LINKS FORMULA a(n) = A033677(A002522(n)). EXAMPLE a(7) = 10 because 7^2+1 = 2*5*5 and 2*5 = 10 is the smallest divisor >=sqrt(7^2+1) = 7.0710678118... MATHEMATICA Table[Select[Divisors[n^2+1], # >= Sqrt[n^2+1] &, 1] // First, {n, 80}] PROG (PARI) concat(1, vector(100, n, d=divisors(n^2+1); k=1; while(d[k]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 21:17 EDT 2019. Contains 323504 sequences. (Running on oeis4.)