login
A258988
Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).
8
0, 8, 5, 1, 5, 9, 8, 2, 2, 5, 3, 4, 8, 3, 3, 6, 5, 1, 4, 0, 6, 8, 0, 6, 0, 1, 8, 8, 7, 2, 3, 6, 7, 3, 4, 5, 9, 5, 7, 3, 3, 9, 5, 0, 8, 5, 8, 6, 8, 7, 7, 3, 2, 0, 4, 6, 7, 1, 0, 3, 4, 3, 2, 0, 5, 3, 3, 0, 8, 5, 7, 6, 7, 5, 0, 8, 7, 1, 7, 6, 6, 5, 1, 1, 1, 7, 3, 3, 8, 6, 7, 5, 8, 1, 8, 5, 0, 2, 0, 7, 2, 0, 5, 4, 1
OFFSET
0,2
FORMULA
zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).
EXAMPLE
0.0851598225348336514068060188723673459573395085868773204671034320533...
MATHEMATICA
Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
PROG
(PARI) zetamult([4, 3]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Sequence in context: A249449 A357466 A334496 * A139721 A307384 A261882
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved