login
A258987
Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).
9
2, 1, 3, 7, 9, 8, 8, 6, 8, 2, 2, 4, 5, 9, 2, 5, 4, 7, 0, 9, 9, 5, 8, 3, 5, 7, 4, 5, 0, 8, 0, 3, 3, 6, 4, 9, 6, 4, 0, 9, 5, 8, 9, 5, 7, 8, 6, 5, 5, 1, 7, 5, 5, 6, 1, 4, 4, 5, 1, 2, 7, 4, 8, 9, 4, 7, 1, 2, 5, 8, 3, 6, 6, 1, 4, 6, 9, 8, 1, 0, 2, 0, 4, 1, 7, 0, 9, 5, 6, 0, 2, 8, 9, 9, 9, 1, 1, 5, 5, 0, 6, 4, 8
OFFSET
0,1
FORMULA
zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
EXAMPLE
0.213798868224592547099583574508033649640958957865517556144512748947...
MATHEMATICA
RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
PROG
(PARI) zetamult([3, 3]) \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Sequence in context: A112027 A174400 A178079 * A174254 A024404 A077173
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved