login
A258983
Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).
8
2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
OFFSET
0,1
COMMENTS
Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017
LINKS
Dominique Manchon, Arborified multiple zeta values, arXiv:1603.01498 [math.CO], 2016.
Eric Weisstein's MathWorld, Multivariate Zeta Function
FORMULA
zetamult(3,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).
EXAMPLE
0.2288103976033537597687461489416887919325093427198821602294071...
MATHEMATICA
RealDigits[3*Zeta[2]*Zeta[3] - (11/2)*Zeta[5], 10, 104] // First
PROG
(PARI) zetamult([3, 2]) \\ Charles R Greathouse IV, Jan 21 2016
(PARI) zetamult([2, 2, 1]) \\ Charles R Greathouse IV, Jan 04 2017
CROSSREFS
Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).
Sequence in context: A195299 A095297 A269545 * A195138 A094887 A021441
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved