login
Number of (n+3)X(1+3) 0..1 arrays with no 4x4 subblock diagonal sum not equal the antidiagonal sum
1

%I #4 Jun 15 2015 12:26:29

%S 17920,80000,357600,1645856,7668960,35887648,169347520,803828768,

%T 3829693280,18318594784,87917964800,423088386624,2041161306400,

%U 9869739175968,47819393840000,232117792647904,1128649067945600

%N Number of (n+3)X(1+3) 0..1 arrays with no 4x4 subblock diagonal sum not equal the antidiagonal sum

%C Column 1 of A258957

%H R. H. Hardin, <a href="/A258950/b258950.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) -34*a(n-2) +52*a(n-3) -389*a(n-4) +1200*a(n-5) -487*a(n-6) +3908*a(n-7) -14360*a(n-8) +348*a(n-9) -14088*a(n-10) +73248*a(n-11) +2240*a(n-12) +12872*a(n-13) -133456*a(n-14) -2760*a(n-15) +3568*a(n-16) +39552*a(n-17) +51040*a(n-18) -22336*a(n-19) +896*a(n-20) +5632*a(n-21) -8704*a(n-22) +2048*a(n-23)

%e Some solutions for n=2

%e ..0..0..1..1....0..1..1..1....0..0..0..0....1..0..0..0....0..0..0..1

%e ..1..0..0..0....1..1..1..0....1..0..0..0....0..0..0..1....0..1..1..0

%e ..1..0..0..1....1..1..1..1....0..0..1..1....1..1..0..0....1..0..1..1

%e ..0..1..0..1....0..1..0..1....1..1..1..0....1..1..1..1....1..0..1..1

%e ..1..0..0..1....1..1..0..1....1..1..0..1....1..1..0..1....0..1..1..0

%Y Cf. A258957

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 15 2015