login
a(n) = number of integral points on the elliptic curve y^2 = x^3 - (n^2)*x + 1, considering only nonnegative values of y.
1

%I #16 Apr 23 2021 20:53:01

%S 3,6,11,9,15,13,14,17,26,12,12,11,12,19,20,11,19,36,12,17,16,11,19,16,

%T 15,27,17,17,18,16,12,15,17,11,12,11,28,16,12,11,15,24,27,11,17,12,26,

%U 15,17,15,12,15,17,27,12,14,16,15,16,24,12,41,17,16,12,11,17,16,16,15,23,15,16,20,15

%N a(n) = number of integral points on the elliptic curve y^2 = x^3 - (n^2)*x + 1, considering only nonnegative values of y.

%C For n>3, the number of integral points on y = x^3 - (n^2)*x + 1 is at least 11. These 11 points correspond to the solutions x = {-1, 0, n, -n, n + 2, -n + 2, n^2 - 1, n^2 - 2n + 2, n^2 + 2n + 2, n^4 + 2n, n^4 - 2n}.

%H Robert Israel, <a href="/A258928/b258928.txt">Table of n, a(n) for n = 0..209</a>

%e a(0) = 3 because the integer points on y^2 = x^3 + 1 are (-1, 0), (0, 1), and (2, 3).

%o (Sage)

%o def f(n):

%o R.<x,y> = QQ[]

%o E = EllipticCurve(y^2 - x^3 + n^2*x - 1)

%o return len(E.integral_points(both_signs=false))

%o [f(x) for x in range(40)] # _Robert Israel_, Apr 23 2021

%Y Cf. A081119, A081120, A259191.

%K nonn

%O 0,1

%A _Morris Neene_, Jun 14 2015

%E More terms from _Robert Israel_, Apr 23 2021