login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258927 E.g.f. satisfies: A(x) = Integral 1 + A(x)^6 dx. 9
1, 720, 410572800, 4492717498368000, 348990783113936240640000, 118162808964225967251573964800000, 130226468530398571130647349959852032000000, 384446125794905598149974467971605129718661120000000, 2644398446216951886577241780697447635225293650237849600000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From Vaclav Kotesovec, Jun 17 2015: (Start)

In general, for k>2, if e.g.f. satisfies A(x) = Integral 1 + A(x)^k dx, then a(n) ~ k^(k/(k-1)) * n^(1/(k-1)) * (k*n)! * (k*sin(Pi/k)/Pi)^(k*n + k/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1))).

(End)

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..75

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = Series_Reversion( Integral 1/(1+x^6) dx ).

(2) A(x)^3 = tan( 3 * Integral A(x)^2 dx ).

Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^6)^(1/6) dx ) is the e.g.f. of A258926, then e.g.f. A(x) of this sequence satisfies:

(3) A(x) = S(x)/C(x),

(4) A(x) = Integral 1/C(x)^6 dx,

(5) A(x)^3 = S(x)^3/C(x)^3 = tan( 3 * Integral S(x)^2/C(x)^2 dx ).

a(n) ~ 2^(6/5) * 3^(6*n+12/5) * (6*n)! * n^(1/5) / (5^(1/5) * Gamma(1/5) * Pi^(6*n+6/5)). - Vaclav Kotesovec, Jun 18 2015

EXAMPLE

E.g.f.: A(x) = x + 720*x^7/7! + 410572800*x^13/13! + 4492717498368000*x^19/19! +...

where Series_Reversion(A(x)) = x - x^7/7 + x^13/13 - x^19/19 + x^25/25 +...

Also, A(x) = S(x)/C(x) where

S(x) = x - 120*x^7/7! - 21859200*x^13/13! - 131273353728000*x^19/19! +...+ A258926(n)*x^(6*n+1)/(6*n+1)! +...

C(x) = 1 - 120*x^6/6! - 21859200*x^12/12! - 131273353728000*x^18/18! +...+ A258926(n)*x^(6*n)/(6*n)! +...

such that C(x)^6 + S(x)^6 = 1.

PROG

(PARI) /* E.g.f. Series_Reversion( Integral 1/(1+x^6) dx ): */

{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^6 + O(x^(6*n+2))) ) ); (6*n+1)!*polcoeff(A, 6*n+1)}

for(n=0, 20, print1(a(n), ", "))

(PARI) /* E.g.f. A(x) = Integral 1 + A(x)^6 dx.: */

{a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^6 + O(x^(6*n+2)) )); (6*n+1)!*polcoeff(A, 6*n+1)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A000182(n-1) (k=2), A258880 (k=3), A258901 (k=4), A258925 (k=5), A259112 (k=7), A259113 (k=8), A258926, A258994.

Sequence in context: A068300 A003792 A208192 * A195390 A261427 A210280

Adjacent sequences:  A258924 A258925 A258926 * A258928 A258929 A258930

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 20:05 EDT 2018. Contains 316378 sequences. (Running on oeis4.)