login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258922 E.g.f. satisfies: A(x) = 1/(3 - 2*exp(x*A(x))). 2
1, 2, 18, 302, 7562, 253542, 10685794, 543309230, 32378850042, 2214215333750, 170939286647570, 14707184259036414, 1395561779648175274, 144795755972202587462, 16308198003201872476866, 1981633767850818093910094, 258406311809937562215099482, 35994776359231593721760238102 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..17.

FORMULA

E.g.f. A(x) satisfies:

(1) A(x) = (1/x) * Series_Reversion( 3*x - 2*x*exp(x) ).

(2) A(x) = 1 + (1/x) * Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^n / n!.

(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^(n-1) / n! ).

a(n) = A259063(n+1) / (n+1). - Vaclav Kotesovec, Jun 19 2015

a(n) ~ (c/3)^(n+1) * n^(n-1) / (sqrt(c+1) * exp(n) * (c-1)^(2*n+1)), where c = LambertW(3*exp(1)/2). - Vaclav Kotesovec, Jun 19 2015

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 302*x^3/3! + 7562*x^4/4! + 253542*x^5/5! +...

where A(3*x - 2*x*exp(x)) = 1/(3 - 2*exp(x)).

MATHEMATICA

CoefficientList[1/x*InverseSeries[Series[3*x - 2*x*E^x, {x, 0, 21}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 19 2015 *)

PROG

(PARI) {a(n) = local(A=1); A = (1/x)*serreverse(3*x - 2*x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A259063, A052894, A258923.

Sequence in context: A121564 A224384 A092563 * A192555 A179497 A296837

Adjacent sequences:  A258919 A258920 A258921 * A258923 A258924 A258925

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 19:54 EST 2018. Contains 317240 sequences. (Running on oeis4.)