login
A258916
n*a(n+1) = (2*n^2+2*n+1)*a(n)+(n+1)*a(n-1); a(0)=1, a(1)=0.
1
1, 0, 2, 13, 111, 1154, 14212, 202683, 3288125, 59825284, 1206806406, 26736229385, 645416587627, 16863580242438, 474172509285896, 14277112865214199, 458325203221106937, 15626871667138245128, 563971893271395540490, 21478758747365642882949
OFFSET
0,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..403
FORMULA
a(n) ~ (BesselI(0,1)-BesselI(1,1)) * 2^(n-1) * n!. - Vaclav Kotesovec, Jul 10 2015
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==0, n*a[n+1]== (2n^2 +2*n+1)*a[n] + (n+1)*a[n-1]}, a, {n, 30}]
PROG
(PARI) a=vector(20); a[1]=0; a[2]=2; for(n=3, #a, a[n]=((2*n^2 - 2*n + 1)*a[n-1] + n*a[n-2])/(n-1)); concat(1, a) \\ Charles R Greathouse IV, Jul 09 2015
CROSSREFS
Sequence in context: A245806 A192204 A176932 * A052444 A277463 A277469
KEYWORD
nonn,easy
AUTHOR
G. C. Greubel, Jul 09 2015
STATUS
approved