login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258900 E.g.f.: S(x) = Series_Reversion( Integral 1/(1-x^4)^(1/4) dx ), where the constant of integration is zero. 3
1, -6, -1764, -7700616, -147910405104, -8310698364852576, -1085420895640591777344, -284168646775526186095019136, -134459287943928269154814258953984, -106506405136317713669903020280294647296 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..9.

FORMULA

Let e.g.f. C(x) = Sum_{n>=0} a(n)*x^(4*n)/(4*n)! and e.g.f. S(x) = Sum_{n>=0} a(n)*x^(4*n+1)/(4*n+1)!, then C(x) and S(x) satisfy:

(1) C(x)^4 + S(x)^4 = 1,

(2) S'(x) = C(x),

(3) C'(x) = -S(x)^3/C(x)^2,

(4) C(x)^3 * C'(x) + S(x)^3 * S'(x) = 0,

(5) S(x)/C(x) = Integral 1/C(x)^4 dx,

(6) S(x)/C(x) = Series_Reversion( Integral 1/(1+x^4) dx ) = Series_Reversion( Sum_{n>=0} (-1)^n * x^(4*n+1)/(4*n+1) ).

(7) S(x)^2/C(x)^2 = tan( 2 * Integral S(x)/C(x) dx ).

(8) C(x)^2 + I*S(x)^2 = exp( 2*I * Integral S(x)/C(x) dx ).

EXAMPLE

E.g.f. with offset 0 is C(x) and e.g.f. with offset 1 is S(x) where:

C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! -...

S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! -...

such that C(x)^4 + S(x)^4 = 1:

C(x)^4 = 1 - 24*x^4/4! + 8064*x^8/8! + 2128896*x^12/12! + 52932870144*x^16/16! +...

S(x)^4 = 24*x^4/4! - 8064*x^8/8! - 2128896*x^12/12! - 52932870144*x^16/16! -...

Related Expansions.

(1) The series reversion of S(x) is Integral 1/(1-x^4)^(1/4) dx:

Series_Reversion(S(x)) = x + 6*x^5/5! + 6300*x^9/9! + 56133000*x^13/13! +...

1/(1-x^4)^(1/4) = 1 + 6*x^4/4! + 6300*x^8/8! + 56133000*x^12/12! + 1992160170000*x^16/16! +...+ A258899(n)*x^(4*n)/(4*n)! +...

(2) d/dx S(x)/C(x) = 1/C(x)^4:

1/C(x)^4 = 1 + 24*x^4/4! + 32256*x^8/8! + 285272064*x^12/12! +...

S(x)/C(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! +...+ A258901(n)*x^(4*n+1)/(4*n+1)! +...

where

Series_Reversion(S(x)/C(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 - x^21/21 +...

PROG

(PARI) /* E.g.f. Series_Reversion(Integral 1/(1-x^4)^(1/4) dx): */

{a(n)=local(S=x); S = serreverse( intformal(  1/(1-x^4 +x*O(x^(4*n)))^(1/4) )); (4*n+1)!*polcoeff(S, 4*n+1)}

for(n=0, 15, print1(a(n), ", "))

(PARI) /* E.g.f. C(x) with offset 0: */

{a(n)=local(S=x, C=1+x); for(i=1, n, S=intformal(C +x*O(x^(4*n))); C=1-intformal(S^3/C^2 +x*O(x^(4*n))); ); (4*n)!*polcoeff(C, 4*n)}

for(n=0, 15, print1(a(n), ", "))

(PARI) /* E.g.f. S(x) with offset 1: */

{a(n)=local(S=x, C=1+x); for(i=1, n+1, S=intformal(C +x*O(x^(4*n))); C=1-intformal(S^3/C^2 +x*O(x^(4*n+1))); ); (4*n+1)!*polcoeff(S, 4*n+1)}

for(n=0, 15, print1(a(n), ", "))

CROSSREFS

Cf. A258899, A258901, A258878.

Sequence in context: A209609 A034841 A149187 * A250393 A221627 A160301

Adjacent sequences:  A258897 A258898 A258899 * A258901 A258902 A258903

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jun 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 23:47 EST 2018. Contains 299297 sequences. (Running on oeis4.)