OFFSET
1,1
LINKS
Jonathan Borwein, Also Eisenstein
FORMULA
p(1) = 1/5, p(n) = (3/((4n+1)*(2n-3)))*Sum_{k=1..n-1} p(k)*p(n-k).
The closed form of the Gaussian integer zeta sum in question is zeta_G(4n) = p(n)*L^(4n)/(4n-1), where L is the lemniscate constant.
EXAMPLE
Sequence of fractions begins:
1/5, 1/75, 2/4875, 1/82875, 2/6215625, 2/242409375, 4/19527421875, 223/ 44815433203125, ...
MATHEMATICA
p[1] = 1/5; p[n_] := p[n] = (3/((4n + 1)*(2n - 3)))*Sum[p[k]*p[n - k], {k, 1, n - 1}]; Table[p[n] // Denominator, {n, 1, 30}]
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Jean-François Alcover, Jun 10 2015
STATUS
approved