login
Numbers n such that 1 + sigma(n)+ sigma(n)^2 is prime.
3

%I #18 Sep 08 2022 08:46:12

%S 1,2,5,6,7,8,11,13,14,15,19,23,34,37,40,45,49,53,57,58,60,61,78,79,89,

%T 92,105,106,109,123,129,132,137,138,140,141,143,148,149,154,155,156,

%U 160,161,163,165,167,182,188,191,193,195,201,208,212,213,222,226

%N Numbers n such that 1 + sigma(n)+ sigma(n)^2 is prime.

%C Also numbers n such that A000203(n) is in A002384. - _Robert Israel_, Jun 09 2015

%H Robert Price, <a href="/A258775/b258775.txt">Table of n, a(n) for n = 1..2122</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Cyclotomic Polynomials at x=n, n! and sigma(n)">Cyclotomic Polynomials at x=n, n! and sigma(n)</a>

%p select(isprime @ (t -> 1+t+t^2) @ numtheory:-sigma, [$1..1000]); # _Robert Israel_, Jun 09 2015

%t Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2] & ]

%t Select[ Range[10000], PrimeQ[ Cyclotomic[3, DivisorSigma[1, #]]] &]

%o (PARI) for(n=1,10^3,if(isprime(1+sigma(n)+sigma(n)^2),print1(n,", "))) \\ _Derek Orr_, Jun 09 2015

%o (Magma) [n: n in [1..250] | IsPrime(1 + SumOfDivisors(n)+ SumOfDivisors(n)^2)]; // _Vincenzo Librandi_, Jun 10 2015

%Y Cf. A002384, A000203, A258774, A258776.

%K nonn

%O 1,2

%A _Robert Price_, Jun 09 2015