login
A258754
Decimal expansion of Ls_8(Pi), the value of the 8th basic generalized log-sine integral at Pi.
10
5, 0, 4, 0, 0, 3, 9, 8, 7, 9, 1, 1, 5, 0, 4, 5, 1, 6, 4, 3, 4, 5, 6, 2, 1, 4, 3, 8, 3, 3, 5, 3, 9, 3, 1, 5, 9, 3, 0, 5, 3, 7, 5, 9, 6, 1, 6, 7, 7, 4, 8, 2, 0, 0, 2, 0, 0, 2, 1, 3, 8, 5, 3, 9, 1, 6, 1, 3, 4, 1, 1, 9, 9, 0, 5, 7, 5, 1, 4, 0, 6, 2, 1, 5, 8, 9, 5, 4, 2, 4, 5, 3, 0, 3, 2, 2, 3, 3, 5, 7, 0, 5, 3, 8, 6
OFFSET
4,1
FORMULA
-Integral_{t=0..Pi} log(2*sin(t/2))^7 = (2835/4)*Pi*zeta(7) + (315/8)*Pi^3*zeta(5) + (133/32)*Pi^5*zeta(3).
Also equals 7th derivative of -Pi*binomial(x, x/2) at x=0.
EXAMPLE
5040.03987911504516434562143833539315930537596167748200200213853916...
MATHEMATICA
RealDigits[(2835/4)*Pi*Zeta[7] + (315/8)*Pi^3*Zeta[5] + (133/32)*Pi^5*Zeta[3], 10, 105] // First
PROG
(PARI) -intnum(t=0, Pi, log(2*sin(t/2))^7) \\ Hugo Pfoertner, Jul 22 2020
CROSSREFS
Cf. A258749 (Ls_3(Pi)), A258750 (Ls_4(Pi)), A258751 (Ls_5(Pi)), A258752 (Ls_6(Pi)), A258753 (Ls_7(Pi)).
Sequence in context: A225424 A202626 A011995 * A175296 A076266 A350281
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved