%I #14 Feb 16 2025 08:33:25
%S 1,-82,-243,-1194,2242,0,3599,2950,0,-12242,-20950,19926,-16807,7294,
%T 0,18950,97908,0,-88806,0,59049,-183844,51050,0,-92142,-98002,0,
%U 246486,118706,290142,-161051,-38868,0,0,75658,0,-241900,47614,-544806,-493658,0,0
%N Expansion of (f(-x)^3 / f(-x^2))^6 - 64 * x * (f(-x^2)^3 / f(-x))^6 in powers of x where f() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.
%C Denoted by g_6(q) in Cynk and Hulek on page 8 as a level 32 cusp form of weight 6.
%H G. C. Greubel, <a href="/A258739/b258739.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Cynk and K. Hulek, <a href="http://arXiv.org/abs/math/0509424">Construction and examples of higher-dimensional modular Calabi-Yau manifolds</a> (arXiv:math/0509424).
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of q^(-1/4) * ((eta(-q)^3 / eta(-q^2))^6 - 64 * (eta(-q^2) / eta(-q))^6) in powers of q.
%F a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(5*e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 4).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = -(32^3) (t/i)^6 f(t) where q = exp(2 Pi i t).
%e G.f. = 1 - 82*x - 243*x^2 - 1194*x^3 + 2242*x^4 + 3599*x^6 + 2950*x^7 + ...
%e G.f. = q - 82*q^5 - 243*q^9 - 1194*q^13 + 2242*q^17 + 3599*q^25 + 2950*q^29 + ...
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^3 / QPochhammer[ x^2])^6 - 64 x (QPochhammer[ x^2]^3 / QPochhammer[ x])^6, {x, 0, n}];
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^2 + A))^6 - 64 * x * (eta(x^2 + A)^3 / eta(x + A))^6, n))};
%o (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if(n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if(p==2, 0, p%4==3, if(e%2, 0, (-p)^(5*e/2)), y = -sum(i=0, p-1, kronecker(i^3-i, p)); a0=2; a1=y; for(i=2, 5, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for(i=2, e, x=y*a1 -p^5*a0; a0=a1; a1=x); a1)))};
%o (Magma) A := Basis( CuspForms( Gamma0(32), 6), 165); A[1] - 82*A[5] - 243*A[9] - 1194*A[13] + 2242*A[16];
%Y Cf. A000729, A002171, A008441, A215472, A215601.
%K sign,changed
%O 0,2
%A _Michael Somos_, Jun 08 2015