login
A258672
Number of partitions of n*2^n into parts that are at most n.
3
0, 1, 5, 61, 2280, 273052, 110537709, 156456474138, 790541795804221, 14445283925963101577, 963056085414756870071490, 235864774408401842540220265704, 213426797830699546133563821747980513, 717147073290996884137625501875655000693923
OFFSET
0,3
COMMENTS
Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.
LINKS
FORMULA
a(n) ~ n^n * 2^(n*(n-1)) / (n!)^2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 07 2015
STATUS
approved