login
A258670
Number of partitions of (2*n)! into parts that are at most n.
5
0, 1, 13, 43561, 455366036161, 60209252317216962943201, 291857679749953126623181556402787323521, 120972618144269517756284629487432992029777542693069847287041
OFFSET
0,3
COMMENTS
Conjecture: If f(n) >= O(n^4) then "number of partitions of f(n) into parts that are at most n" is asymptotic to f(n)^(n-1) / (n!*(n-1)!). For the examples see A238016 and A238010.
LINKS
G. J. Rieger, Über Partitionen, Mathematische Annalen (1959), Volume: 138, page 356-362
FORMULA
a(n) ~ (2*n)!^(n-1) / (n!*(n-1)!).
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 07 2015
STATUS
approved