This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258664 A total of n married couples, including a mathematician M and his wife, are to be seated at the 2n chairs around a circular table, with no man seated next to his wife. After the ladies are seated at every other chair, M is the first man allowed to choose one of the remaining chairs. The sequence gives the number of ways of seating the other men, with no man seated next to his wife, if M chooses the chair that is 3 seats clockwise from his wife's chair. 8
0, 0, 1, 1, 4, 20, 115, 787, 6184, 54888, 542805, 5916725, 70463900, 910167596, 12672415015, 189181881575, 3014307220880, 51054940726928, 915987174021609, 17352888926841897, 346144782915314740, 7251738265074465220, 159193007549552845339, 3654204694819144118651 (list; graph; refs; listen; history; text; internal format)



This is a variation of the classic ménage problem (cf. A000179).

It is known [Riordan, ch. 8, ex. 7(b)] that, after the ladies are seated at every other chair, the number U_n of ways of seating the men in the ménage problem has asymptotic expansion U_n ~ e^(-2)*n!*(1 + Sum_{k>=1}(-1)^k/(k!(n-1)_k)), where (n)_k = n*(n-1)*...*(n-k+1).

Therefore, it is natural to conjecture that a(n) ~ e^(-2)*n!/(n-2)*(1 + Sum_{k>=1}(-1)^k/(k!(n-1)_k)).


I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, chs. 7, 8.


Table of n, a(n) for n=1..24.

Peter J. C. Moses, Seatings for 6 couples

E. Lucas, Sur le problème des ménages, Théorie des nombres, Paris, 1891, 491-496.

Vladimir Shevelev, Peter J. C. Moses, The ménage problem with a known mathematician, arXiv:1101.5321 [math.CO], 2011, 2015.

Vladimir Shevelev and Peter J. C. Moses, Alice and Bob go to dinner: A variation on menage, INTEGERS, Vol. 16 (2016), #A72.

J. Touchard, Sur un problème de permutations, C.R. Acad. Sci. Paris, 198 (1934), 631-633.


a(n) = Sum_{0<=k<=n-1}(-1)^k*(n-k-1)! * Sum_{max(k-n+2, 0)<=j<=min(k,1)} binomial(2-j, j)*binomial(2*n-k+j-4, k-j).


a[d_, n_]:=If[n<=#-1, 0, Sum[((-1)^k)*(n-k-1)!Sum[Binomial[2#-j-4, j]*Binomial[2(n-#)-k+j+2, k-j], {j, Max[#+k-n-1, 0], Min[k, #-2]}], {k, 0, n-1}]]&[(d+3)/2];

Map[a[3, #]&, Range[25]] (* Peter J. C. Moses, Jun 07 2015 *)


(PARI) a(n) = sum(k=0, n-1, (-1)^k*(n-k-1)!*sum(j=max(k-n+2, 0), min(k, 1), binomial(2-j, j)*binomial(2*n-k+j-4, k-j))); \\ Michel Marcus, Jun 26 2015


Cf. A000179, A258665, A258666, A258667, A258673, A259212.

Sequence in context: A171802 A100034 A192924 * A231539 A106567 A077445

Adjacent sequences:  A258661 A258662 A258663 * A258665 A258666 A258667




Vladimir Shevelev and Peter J. C. Moses, Jun 07 2015



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:15 EDT 2019. Contains 328267 sequences. (Running on oeis4.)