%I #12 Jun 09 2015 21:07:58
%S 1,4,9,1521,3600,7396,8100,103041,120409,160801,11471769,11655396,
%T 12802084,15210000,22724289,36000000,42889401,42928704,45481536,
%U 45968400,46009089,54567769,61811044,62236321,70006689,73925604,73960000,76965529,79174404,81000000,85008400,97693456,97713225,100000000
%N Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square.
%C If a(n) has m = p^k digits, then a(n)*10^((p-1)*m) is also a member of the sequence. For instance, 1521*10^(2^k-4) is in the sequence for all integers k >=2. # _Chai Wah Wu_, Jun 08 2015
%H Chai Wah Wu, <a href="/A258660/b258660.txt">Table of n, a(n) for n = 1..3730</a>
%F a(n) = A153745(n)^2.
%o (Python)
%o from sympy import divisors
%o from gmpy2 import is_prime, isqrt, isqrt_rem, is_square
%o A258660_list = []
%o for l in range(1,17):
%o ....if not is_prime(l):
%o ........fs = divisors(l)
%o ........a, b = isqrt_rem(10**(l-1))
%o ........if b > 0:
%o ............a += 1
%o ........for n in range(a,isqrt(10**l-1)+1):
%o ............n2 = n**2
%o ............ns = str(n2)
%o ............for g in fs:
%o ................y = 0
%o ................for h in range(0,l,g):
%o ....................y += int(ns[h:h+g])
%o ................if not is_square(y):
%o ....................break
%o ............else:
%o ................A258660_list.append(n2) # _Chai Wah Wu_, Jun 08 2015
%Y Cf. A153745.
%K base,nonn
%O 1,2
%A _Doug Bell_, Jun 06 2015
%E Corrected a(13)-a(14) by _Chai Wah Wu_, Jun 08 2015