login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258620 Number of tanglegrams of size n. 8
1, 1, 2, 13, 114, 1509, 25595, 535753, 13305590, 382728552, 12515198465, 458621603279, 18619063906689, 829607273337513, 40253392454978755, 2112878091130119496, 119296114546292088543, 7209829960147215492897, 464413707136960430809460, 31762965767675300603026848 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

R. Page, Tangled trees: phylogeny, cospeciation, and coevolution, The University of Chicago Press, 2002.

LINKS

Matjaz Konvalinka, Table of n, a(n) for n = 1..366

S. C. Billey, M. Konvalinka, and F. A. Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.

Sara Billey, MatjaĆŸ Konvalinka, Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.

M. Konvalinka, S. Wagner, The shape of random tanglegrams, arXiv preprint arXiv:1512.01168, 2015.

Dimbinaina Ralaivaosaona, Jean Bernoulli Ravelomanana, Stephan Wagner, Counting Planar Tanglegrams, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Article 32.

FORMULA

a(n) = Sum_{lambda binary partition of n} (Product_{i=2..l(lambda)} (2(lambda_i+...+lambda_l)-1)^2)/z_lambda.

a(n) ~ 2^(2*n-3/2) * n^(n-5/2) / (sqrt(Pi) * exp(n-1/8)).

MATHEMATICA

r[h_, n_, s_] :=

  r[h, n, s] =

   If[n == 0, 1,

    Sum[Product[(2 (s + j 2^h) - 1)^2/(j 2^h), {j, m}] r[

       h + 1, (n - m)/2, s + m 2^h], {m, n, 0, -2}]];

tang[n_] := r[0, n, 0]/(2 n - 1)^2;

CROSSREFS

Sequence in context: A127891 A110369 A212071 * A209174 A209718 A208958

Adjacent sequences:  A258617 A258618 A258619 * A258621 A258622 A258623

KEYWORD

nonn

AUTHOR

Matjaz Konvalinka, Jun 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 17:36 EST 2020. Contains 338616 sequences. (Running on oeis4.)