login
A258588
Minimal most likely sum for a roll of n 10-sided dice.
1
1, 11, 16, 22, 27, 33, 38, 44, 49, 55, 60, 66, 71, 77, 82, 88, 93, 99, 104, 110, 115, 121, 126, 132, 137, 143, 148, 154, 159, 165, 170, 176, 181, 187, 192, 198, 203, 209, 214, 220, 225, 231, 236, 242, 247, 253, 258, 264, 269, 275
OFFSET
1,2
FORMULA
G.f.: x*(1 + 10*x + 4*x^2 - 4*x^3)/((1 - x)^2*(1 + x)).
a(n) = floor(11*n/2) = (22*n + (-1)^n - 1)/4 with n>1, a(1)=1.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
EXAMPLE
For n=1, there are ten equally likely outcomes, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and the smallest of these is 1, so a(1)=1.
MATHEMATICA
Join[{1}, Table[(22 n + (-1)^n - 1)/4, {n, 2, 50}]]
PROG
(PARI) a(n)=if(n<2, 1, 11*n\2);
vector(50, n, a(n))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gianmarco Giordano, Nov 06 2015
STATUS
approved