login
A258511
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the diagonal and antidiagonal minus the sum of the medians of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally
13
512, 2679, 2679, 10762, 12156, 10762, 44548, 62096, 56526, 44548, 193488, 323360, 425880, 304844, 193488, 827673, 1679437, 3024724, 3064020, 1627220, 827673, 3456356, 8808509, 20998652, 27571468, 21229200, 8659189, 3456356, 14347670
OFFSET
1,1
COMMENTS
Table starts
......512.......2679.......10762.........44548.........193488...........827673
.....2679......12156.......62096........323360........1679437..........8808509
....10762......56526......425880.......3024724.......20998652........147635738
....44548.....304844.....3064020......27571468......236448598.......2068059998
...193488....1627220....21229200.....230967748.....2402910000......26456908324
...827673....8659189...147424970....1980067182....25984470984.....369487230074
..3456356...46288077..1030931222...17303680979...287984893776....5245904339615
.14347670..247098224..7213265988..150308716661..3137021616326...72863622332517
.59706588.1317234754.50406135414.1302151974414.34069606919962.1011482738365911
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 50] for n>54
Empirical for row n:
n=1: [same linear recurrence of order 50] for n>54
EXAMPLE
Some solutions for n=2 k=4
..0..1..0..0..1..0....0..0..0..1..0..1....0..0..0..1..0..0....1..1..0..0..1..1
..0..0..0..0..0..1....1..0..1..0..0..0....0..0..0..0..0..0....1..0..0..0..0..1
..1..0..0..0..0..0....0..0..1..0..1..0....0..0..1..0..0..0....1..1..0..0..0..1
..0..1..0..1..1..0....0..1..0..0..1..1....1..1..1..0..0..0....0..0..0..0..0..0
CROSSREFS
Column 1 and row 1 are A254991
Sequence in context: A257189 A254989 A254982 * A254998 A254991 A186840
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 01 2015
STATUS
approved