The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258502 Decimal expansion of the nontrivial real solution of x^(7/2) = (7/2)^x. 2
 2, 1, 8, 9, 6, 9, 7, 5, 5, 1, 1, 7, 5, 6, 1, 3, 5, 0, 4, 8, 0, 8, 3, 1, 6, 8, 1, 4, 4, 5, 7, 3, 1, 3, 0, 5, 4, 9, 5, 2, 0, 3, 1, 9, 8, 3, 6, 5, 1, 0, 3, 9, 7, 9, 3, 0, 0, 8, 6, 4, 3, 0, 2, 6, 4, 2, 3, 7, 7, 0, 7, 6, 7, 9, 4, 7, 7, 2, 6, 4, 7, 7, 6, 5, 1, 2, 9, 6, 4, 1, 4, 3, 9, 6, 7, 8, 9, 3, 9, 5, 2, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Jonathan Sondow, Diego Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164. FORMULA x0 = -((x*ProductLog(-(log(x)/x)))/log(x)), with x = 7/2, where ProductLog is the Lambert W function. EXAMPLE x0 = 2.189697551175613504808316814457313054952031983651039793... z = x0^(7/2) = 15.53618787439250843837688346448101455506861788472622... z > e^e = 15.15426224... = A073226. MATHEMATICA x0 = -((x*ProductLog[-(Log[x]/x)])/Log[x]) /. x -> 7/2; RealDigits[x0, 10, 101] // First RealDigits[x/.FindRoot[x^(7/2)==(7/2)^x, {x, 2}, WorkingPrecision-> 120]][[1]] (* Harvey P. Dale, Apr 19 2019 *) CROSSREFS Cf. A073226, A194556, A194557, A258500 (x^(3/2)=(3/2)^x), A258501 (x^(5/2)=(5/2)^x). Sequence in context: A075513 A284211 A246403 * A011019 A254979 A261157 Adjacent sequences:  A258499 A258500 A258501 * A258503 A258504 A258505 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jun 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 02:19 EDT 2020. Contains 333104 sequences. (Running on oeis4.)