The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258490 Number of words of length 2n such that all letters of the ternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word. 2

%I

%S 5,56,465,3509,25571,184232,1325609,9567545,69387483,505915981,

%T 3708195075,27314663271,202116910415,1501769001416,11200258810265,

%U 83815491037841,629152465444715,4735907436066401,35740538971518155,270356740041089471,2049510329494271615

%N Number of words of length 2n such that all letters of the ternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word.

%H Alois P. Heinz, <a href="/A258490/b258490.txt">Table of n, a(n) for n = 3..1000</a>

%F a(n) ~ 8^n / (sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 01 2015

%F Conjecture: 4*n*(n-1)*(46829*n-161203)*a(n) -(n-1)*(4865671*n^2-22433759*n+19821114)*a(n-1) +6*(7756949*n^3-53792553*n^2+117956226*n-84118712)*a(n-2) +(-200071007*n^3+1677158106*n^2-4623144589*n+4201946850)*a(n-3) +2*(2*n-7)*(93171685*n^2-585009841*n+881711802)*a(n-4) -72*(2*n-7)*(2*n-9)*(744719*n-1901876)*a(n-5)=0. - _R. J. Mathar_, Aug 07 2015

%e a(3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.

%p A:= proc(n, k) option remember; `if`(n=0, 1, k/n*

%p end:

%p T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):

%p a:= n-> T(n, 3):

%p seq(a(n), n=3..25);

%t A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];

%t T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];

%t a[n_] := T[n, 3];

%t Table[a[n], {n, 3, 25}] (* _Jean-François Alcover_, May 18 2018, translated from Maple *)

%Y Column k=3 of A256117.

%K nonn

%O 3,1

%A _Alois P. Heinz_, May 31 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 06:48 EST 2021. Contains 340204 sequences. (Running on oeis4.)