login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258490 Number of words of length 2n such that all letters of the ternary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting doublets into the initially empty word. 2
5, 56, 465, 3509, 25571, 184232, 1325609, 9567545, 69387483, 505915981, 3708195075, 27314663271, 202116910415, 1501769001416, 11200258810265, 83815491037841, 629152465444715, 4735907436066401, 35740538971518155, 270356740041089471, 2049510329494271615 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 3..1000

FORMULA

a(n) ~ 8^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015

Conjecture: 4*n*(n-1)*(46829*n-161203)*a(n) -(n-1)*(4865671*n^2-22433759*n+19821114)*a(n-1) +6*(7756949*n^3-53792553*n^2+117956226*n-84118712)*a(n-2) +(-200071007*n^3+1677158106*n^2-4623144589*n+4201946850)*a(n-3) +2*(2*n-7)*(93171685*n^2-585009841*n+881711802)*a(n-4) -72*(2*n-7)*(2*n-9)*(744719*n-1901876)*a(n-5)=0. - R. J. Mathar, Aug 07 2015

EXAMPLE

a(3) = 5: aabbcc, aabccb, abbacc, abbcca, abccba.

MAPLE

A:= proc(n, k) option remember; `if`(n=0, 1, k/n*

      add(binomial(2*n, j)*(n-j)*(k-1)^j, j=0..n-1))

    end:

T:= (n, k)-> add((-1)^i*A(n, k-i)/(i!*(k-i)!), i=0..k):

a:= n-> T(n, 3):

seq(a(n), n=3..25);

MATHEMATICA

A[n_, k_] := A[n, k] = If[n == 0, 1, k/n*Sum[Binomial[2*n, j]*(n - j)*If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]];

T[n_, k_] := Sum[(-1)^i*A[n, k - i]/(i!*(k - i)!), {i, 0, k}];

a[n_] := T[n, 3];

Table[a[n], {n, 3, 25}] (* Jean-Fran├žois Alcover, May 18 2018, translated from Maple *)

CROSSREFS

Column k=3 of A256117.

Sequence in context: A030060 A247710 A247774 * A255953 A174249 A073563

Adjacent sequences:  A258487 A258488 A258489 * A258491 A258492 A258493

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 17:10 EST 2020. Contains 338595 sequences. (Running on oeis4.)