The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258484 Numbers m such that m equals a fixed number raised to the powers of the digits. 2
 1, 10, 12, 100, 101, 111, 1000, 1010, 1033, 1100, 2112, 4624, 10000, 10001, 11101, 20102, 31301, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100, 101110, 101111, 101121, 110000, 110001, 110010, 110100, 110110, 110111, 111000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let m = abcde... and z is a fixed radix -> m = z^a +z^b +z^c +z^d +z^e... A number m made of k ones and h zeros is a member if m-h is divisible by k. Several other large members exist, including 12095925296900865188 (base = 113) and 115330163577499130079377256005 (base = 1500). - Giovanni Resta, Jun 01 2015 LINKS Giovanni Resta, Table of n, a(n) for n = 1..956 (terms < 10^12) Giovanni Resta, Table of a(1..956) values and corresponding bases EXAMPLE 12 = 3^1 + 3^2; 31301 = 25^3 + 25^1 + 25^3 + 25^0 + 25^1; 595968 = 4^5 + 4^9 + 4^5 + 4^9 + 4^6 + 4^8; 13177388 = 7^1 + 7^3 + 7^1 + 7^7 + 7^7 + 7^3 + 7^8 + 7^8. MAPLE P:=proc(n) local a, b, j, k; a:=convert(n, base, 10); b:=0; k:=0; while b v, b--]; v==y]; Select[Range[10^5], okQ] (* Giovanni Resta, Jun 01 2015 *) PROG (Python) def moda(n, a, m): ....kk = 0 ....while n > 0: ........na=int(n%m) ........kk= kk+a**na ........n =int(n//m) ....return kk for c in range (1, 10**8): ....for a in range (1, 20): ........if  c==moda(c, a, 10): ............print (a, c) (PARI) for(n=1, 10^5, d=digits(n); for(m=1, n, s=sum(i=1, #d, m^d[i]); if(s==n, print1(n, ", "); break); if(s>n, break))) \\ Derek Orr, Jun 12 2015 CROSSREFS Cf. A005188, A023052, A257784, A257766, A257787, A257814. Sequence in context: A241252 A301905 A167321 * A116118 A038314 A119225 Adjacent sequences:  A258481 A258482 A258483 * A258485 A258486 A258487 KEYWORD nonn,base AUTHOR Pieter Post, May 31 2015 EXTENSIONS More terms from Giovanni Resta, Jun 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 04:05 EST 2020. Contains 332034 sequences. (Running on oeis4.)