login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.
4

%I #21 Sep 28 2018 05:38:50

%S 1,2,12,130,2216,52078,1558219,56524414,2406802476,117575627562,

%T 6478447651345,397345158550386,26842747368209994,1980156804133210116,

%U 158365138356099680582,13647670818304698139989,1260732993182758276252088,124273946254095006307105363

%N Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.

%H Alois P. Heinz, <a href="/A258467/b258467.txt">Table of n, a(n) for n = 0..300</a>

%F a(n) = A256130(2n,n).

%F a(n) ~ 2^(2*n-1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - _Vaclav Kotesovec_, May 31 2015

%F a(n) ~ Stirling2(2*n, n) = A007820(n). - _Vaclav Kotesovec_, Jun 01 2015

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))

%p end:

%p T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):

%p a:= n-> T(2*n, n):

%p seq(a(n), n=0..20);

%t b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 06 2017, translated from Maple *)

%Y Cf. A256130, A187655, A187657, A217899, A217900, A245109, A319732.

%K nonn

%O 0,2

%A _Alois P. Heinz_, May 30 2015