The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258421 Number of partitions of the 7-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once. 2
 2162160, 196756560, 10778727960, 463305056760, 17266750912320, 586609859314080, 18699578507549520, 569565504689176800, 16777853060738524020, 482011338862966969980, 13586929812483090607600, 377442353035435719228120, 10367784656620152180344310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,1 LINKS Alois P. Heinz, Table of n, a(n) for n = 7..700 MAPLE b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,        A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))     end: A:= proc(n, k) option remember; `if`(n=0, 1,       -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))     end: T:= proc(n, k) option remember;       add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)     end: a:= n-> T(n, 7): seq(a(n), n=7..25); CROSSREFS Column k=7 of A255982. Sequence in context: A253966 A253762 A154874 * A166930 A183754 A049359 Adjacent sequences:  A258418 A258419 A258420 * A258422 A258423 A258424 KEYWORD nonn AUTHOR Alois P. Heinz, May 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 13:24 EDT 2020. Contains 336201 sequences. (Running on oeis4.)