login
A258421
Number of partitions of the 7-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
2162160, 196756560, 10778727960, 463305056760, 17266750912320, 586609859314080, 18699578507549520, 569565504689176800, 16777853060738524020, 482011338862966969980, 13586929812483090607600, 377442353035435719228120, 10367784656620152180344310
OFFSET
7,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 7):
seq(a(n), n=7..25);
CROSSREFS
Column k=7 of A255982.
Sequence in context: A253966 A253762 A154874 * A166930 A183754 A049359
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved