login
A258420
Number of partitions of the 6-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
95040, 6308280, 259518600, 8563232700, 249224561040, 6703099068120, 171052924578480, 4209175565848800, 100941470303368480, 2376150752752629210, 55182874193888254800, 1268931845185709426820, 28968880808493233206500, 657875495503038733415880
OFFSET
6,1
LINKS
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 6):
seq(a(n), n=6..25);
CROSSREFS
Column k=6 of A255982.
Sequence in context: A216122 A206411 A128389 * A206105 A230734 A114660
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved