login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^(2*k)) dx.
2

%I #16 Jun 02 2015 19:05:33

%S 5,7,7,3,3,2,1,2,0,1,8,3,9,7,9,7,0,5,5,5,2,5,4,6,9,6,2,0,1,5,9,0,4,1,

%T 5,5,0,8,0,1,1,9,3,1,3,8,3,5,6,3,4,9,2,4,5,5,8,9,0,8,8,0,3,7,5,1,5,2,

%U 5,2,1,6,4,5,1,9,8,7,7,8,1,3,5,0,6,3,7,1,0,7,0,0,0,0,0,7,1,5,4,0,9,7,8,4,7,8

%N Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^(2*k)) dx.

%C In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k)) dx = Sum_{n} (-1)^n / (m*n*(3*n-1)/2 + 1) is equal to

%C if 0<m<24: 8*sqrt(3)*Pi * sinh(Pi/6*sqrt(24/m-1)) /

%C (sqrt((24-m)*m) * (2*cosh(Pi/3*sqrt(24/m-1))-1))

%C if m = 24: Pi^2/(6*sqrt(3)) = A258414

%C if m > 24: 8*sqrt(3)*Pi*sin(Pi/6*sqrt(1-24/m)) /

%C (sqrt((m-24)*m) * (2*cos(Pi/3*sqrt(1-24/m))-1)).

%C Integral_{x=0..1} Product_{k=1..n} (1+x^(m*k)) dx, where m >= 1, is asymptotic to 2*(m+1)^(n+1)/(m*n^2).

%C Integral_{x=-1..1} Product_{k>=1} (1-x^(2*k)) dx = 8*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3)-1) = 1.154664240367959678... . - _Vaclav Kotesovec_, Jun 02 2015

%H Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>

%F Equals 4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1).

%e 0.5773321201839797055525469620159041550801193138356349245589088...

%p evalf(4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1), 120);

%t RealDigits[4*Pi*Sqrt[3/11]*Sinh[Sqrt[11]*Pi/6] / (2*Cosh[Sqrt[11]*Pi/3] - 1),10,120][[1]]

%Y Cf. A258232, A258406, A258414.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, May 29 2015