login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.
6

%I #24 Oct 10 2023 08:01:05

%S 1,6,1,8,2,0,2,4,2,2,9,4,8,5,6,5,6,1,8,0,2,6,1,3,3,4,9,8,5,7,8,6,5,3,

%T 4,3,1,3,0,6,8,5,7,8,2,8,8,0,1,8,9,9,0,3,9,8,0,4,2,9,4,5,3,5,7,9,5,3,

%U 4,1,5,3,8,0,4,3,7,1,4,8,9,6,8,8,5,3,3,7,1,2,9,9,2,1,5,8,5,4,4,8,5,2,1,8,9,9

%N Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.

%H Vaclav Kotesovec, <a href="http://oeis.org/A258232/a258232_2.pdf">The integration of q-series</a>

%F Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - _Vaclav Kotesovec_, Dec 04 2015

%e 0.16182024229485656180261334985786534313068578288018990398...

%p evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # _Vaclav Kotesovec_, Dec 04 2015

%t nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q4n=N[q4,1000]; Table[SequenceLimit[Take[q4n,j]],{j,Length[q4n]-100,Length[q4n],10}]

%t NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* _Vaclav Kotesovec_, Dec 04 2015 *)

%t RealDigits[NIntegrate[QPochhammer[x]^4, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* _Vaclav Kotesovec_, Oct 10 2023 *)

%o (PARI) default(realprecision, 93);

%o b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2);

%o 2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ _Gheorghe Coserea_, Sep 26 2018

%Y Cf. A000727, A258232, A258406, A258407, A258404, A258405.

%K nonn,cons

%O 0,2

%A _Vaclav Kotesovec_, May 29 2015

%E More digits from _Vaclav Kotesovec_, Oct 10 2023