This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258404 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx. 6
 1, 6, 1, 8, 2, 0, 2, 4, 2, 2, 9, 4, 8, 5, 6, 5, 6, 1, 8, 0, 2, 6, 1, 3, 3, 4, 9, 8, 5, 7, 8, 6, 5, 3, 4, 3, 1, 3, 0, 6, 8, 5, 7, 8, 2, 8, 8, 0, 1, 8, 9, 9, 0, 3, 9, 8, 0, 4, 2, 9, 4, 5, 3, 5, 7, 9, 5, 3, 4, 1, 5, 3, 8, 0, 4, 3, 7, 1, 4, 8, 9, 6, 8, 8, 5, 3, 3, 7, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, The integration of q-series FORMULA Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - Vaclav Kotesovec, Dec 04 2015 EXAMPLE 0.16182024229485656180261334985786534313068578288018990398... MAPLE evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015 MATHEMATICA nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p, x]/Range[1, Exponent[p, x]+1]], {n, 1, nmax}]; q4n=N[q4, 1000]; Table[SequenceLimit[Take[q4n, j]], {j, Length[q4n]-100, Length[q4n], 10}] NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* Vaclav Kotesovec, Dec 04 2015 *) PROG (PARI) default(realprecision, 93); b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2); 2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ Gheorghe Coserea, Sep 26 2018 CROSSREFS Cf. A000727, A258232, A258406, A258407, A258404, A258405. Sequence in context: A021622 A073228 A256853 * A244692 A248589 A288493 Adjacent sequences:  A258401 A258402 A258403 * A258405 A258406 A258407 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, May 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:44 EST 2019. Contains 319251 sequences. (Running on oeis4.)