|
|
A258399
|
|
Number of 4n-length strings of balanced parentheses of exactly n different types that are introduced in ascending order.
|
|
4
|
|
|
1, 2, 98, 11880, 2432430, 714249900, 275335499824, 131928199603200, 75727786603836510, 50713478000403718500, 38843740303576863755100, 33508462196084294380001040, 32157574295254903735909896240, 33990046387543889224733323929120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..250
|
|
FORMULA
|
a(n) = A253180(2n,n).
a(n) ~ c * d^n * n! / n^(5/2), where d = A256254 = 98.8248737517356857317..., c = 0.04120447463568595292374592925415728563265717672... . - Vaclav Kotesovec, Jun 01 2015
|
|
EXAMPLE
|
a(0) = 1: the empty string.
a(1) = 2: ()(), (()).
a(2) = A000108(4) * (2^3-1) = 14*7 = 98.
|
|
MAPLE
|
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
a:= n-> add(A(2*n, n-i)*(-1)^i/((n-i)!*i!), i=0..n):
seq(a(n), n=0..15);
|
|
CROSSREFS
|
Cf. A000108, A253180, A256254, A258426.
Sequence in context: A317729 A223038 A324266 * A212838 A024241 A278684
Adjacent sequences: A258396 A258397 A258398 * A258400 A258401 A258402
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, May 28 2015
|
|
STATUS
|
approved
|
|
|
|