login
A258396
Number of 2n-length strings of balanced parentheses of exactly 8 different types that are introduced in ascending order.
2
1430, 175032, 12597000, 698377680, 33079524324, 1411221754800, 55928745100800, 2100173331484800, 75727786603836510, 2646827388046104120, 90290940344491887000, 3021580012515765901200, 99583828881536195805180, 3242049884573075122369680
OFFSET
8,1
LINKS
FORMULA
Recurrence: (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 72*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*(2*n - 1)*a(n-1) - 2184*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*a(n-2) + 36288*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-3) - 359184*(n-6)*(n-5)*(n-4)*(n-3)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4) + 2153088*(n-6)*(n-5)*(n-4)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-5) - 7559936*(n-6)*(n-5)*(2*n - 11)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-6) + 14026752*(n-6)*(2*n - 13)*(2*n - 11)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-7) - 10321920*(2*n - 15)*(2*n - 13)*(2*n - 11)*(2*n - 9)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-8). - Vaclav Kotesovec, Jun 01 2015
a(n) ~ 32^n / (8!*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015
CROSSREFS
Column k=8 of A253180.
Sequence in context: A264181 A064305 A258495 * A215548 A274253 A227598
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 28 2015
STATUS
approved