login
A258386
Expansion of Product_{k>=1} 1/(1-x^k)^(k+(-1)^k).
1
1, 0, 3, 2, 11, 10, 35, 40, 107, 138, 310, 432, 871, 1262, 2355, 3504, 6186, 9318, 15799, 23934, 39351, 59672, 95772, 144970, 228258, 344244, 533552, 800952, 1225164, 1829530, 2767227, 4109504, 6155310, 9089834, 13497964, 19822252, 29208812, 42660456
OFFSET
0,3
LINKS
FORMULA
a(n) ~ (2*Zeta(3))^(13/36) / (sqrt(3) * Pi * n^(31/36)) * exp(Zeta'(-1) + 3*Zeta(3)^(1/3) * (n/2)^(2/3)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962). - Vaclav Kotesovec, May 28 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k+(-1)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A180185 A072634 A086194 * A159610 A074246 A134426
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 28 2015
STATUS
approved