This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258375 Least primitive weird number with n prime divisors, counting multiplicity. 10

%I

%S 70,836,7192,73616,519712,3963968,33277312,263144192,2113834496,

%T 16995175424,135895635968,1093862207488,8752602423296,70102452125696,

%U 561472495910912,4494940873621504,35979456528646144,287952747599495168

%N Least primitive weird number with n prime divisors, counting multiplicity.

%C A proper subsequence of A002975.

%C Conjecture: a(n) = the smallest primitive weird number of the form 2^(n-2)*p*q where p*q is minimal.

%C Is it known that a(n) always exists? - _Charles R Greathouse IV_, Jun 11 2015

%C No, it is not even unconditionally proved that there are infinitely many primitive weird numbers. In view of this, the above formula a(n) = 2^(n-2)*p*q and the asymptotic formula a(n) ~ 2^(3n-2) are only conjectures. - _M. F. Hasler_, Jul 08 2016

%C The conjectured a(n) ~ 2^(3n-2) follows from the conjecture that a(n) = 2^(n-2)*p*q (cf. A258882) where q is the least prime larger than 2M = 2^n-2 such that 2^(n-2)*q*precprime((Mq-1)/(q-M)) is weird. I also conjecture that for all n > 7, q = nextprime(2^n-2). - _M. F. Hasler_, Jul 13 2016

%H M. F. Hasler, <a href="/A258375/b258375.txt">Table of n, a(n) for n = 3..30</a> (first 16 terms from Robert G. Wilson v)

%H Douglas E. Iannucci, <a href="http://arxiv.org/abs/1504.02761">On primitive weird numbers of the form 2^k*p*q</a>, arXiv:1504.02761 [math.NT], 2015.

%F It appears that a(n) ~ 2^(3n-2). [Corrected by _M. F. Hasler_, Jul 13 2016]

%e a(3) = 2^1 * 5 * 7 = 70

%e a(4) = 2^2 * 11 * 19 = 836

%e a(5) = 2^3 * 29 * 31 = 7192

%e a(6) = 2^4 * 43 * 107 = 73616

%e a(7) = 2^5 * 109 * 149 = 519712

%e a(8) = 2^6 * 241 * 257 = 3963968

%e a(9) = 2^7 * 499 * 521 = 33277312

%e a(10) = 2^8 * 997 * 1031 = 263144192

%e a(11) = 2^9 * 2011 * 2053 = 2113834496

%e a(12) = 2^10 * 4049 * 4099 = 16995175424

%e a(13) = 2^11 * 8101 * 8191 = 135895635968

%e a(14) = 2^12 * 16273 * 16411 = 1093862207488

%e a(15) = 2^13 * 32603 * 32771 = 8752602423296

%e a(16) = 2^14 * 65287 * 65537 = 70102452125696

%e a(17) = 2^15 * 130729 * 131071 = 561472495910912

%e a(18) = 2^16 * 261637 * 262147 = 4494940873621504

%e a(19) = 2^17 * 523571 * 524287 = 35979456528646144

%e a(20) = 2^18 * 1047559 * 1048583 = 287952747599495168

%e a(21) = 2^19 * 2095721 * 2097169 = 2304288287017664512

%e a(22) = 2^20 * 4192267 * 4194319 = 18437851191624859648

%e a(23) = 2^21 * 8385719 * 8388617 = 147523287039340445696

%e a(24) = 2^22 * 16773149 * 16777259 = 1180308456157336305664

%e a(25) = 2^23 * 33548689 * 33554467 = 9443126304886073851904

%e a(26) = 2^24 * 67100681 * 67108879 = 75548667373415913488384

%e a(27) = 2^25 * 134206169 * 134217757 = 604410983292363190829056

%e a(28) = 2^26 * 268419077 * 268435459 = 4835408274665227893604352

%e a(29) = 2^27 * 536847791 * 536870923 = 38683960976635781347016704

%e a(30) = 2^28 * 1073709061 * 1073741827 = 309475567394195954395512832

%t (* copy the terms from A002975, assign them equal to 'lst' and then *) Table[ Min@ Select[ lst, PrimeOmega@# == n &], {n, 3, 12}]

%o (PARI) a(n)=for(k=1,#A=A002975,bigomega(A[k])==n&&return(A[k])) \\ This assumes A002975 is defined as a set or vector with enough terms. A002975 could be replaced by A258882 (for which much larger terms are known) if we assume that all terms are in that sequence. - _M. F. Hasler_, Jul 08 2016

%o (PARI) A258375(n)={ forprime(q=2^n-1,, my(p=precprime((2^(n-1)-1)*(q+1)\(q-2^(n-1)+1)),P); is_A006037(2^(n-2)*p*q) || next; while( is_A006037(2^(n-2)*q*P=precprime(p-1)), p=P); return(2^(n-2)*p*q))} \\ This assumes that all terms are of the form 2^k*p*q. It seems to give correct results at least up to n=30. - _M. F. Hasler_, Jul 13 2016

%Y Cf. A006037, A002975, A258374, A258882.

%K nonn

%O 3,1

%A _Robert G. Wilson v_, May 28 2015

%E a(17) - a(20) from _Robert G. Wilson v_, Jun 14 2015

%E a(17) and a(19) corrected, and new terms a(21) - a(30), from _M. F. Hasler_, Jul 13 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:42 EST 2019. Contains 329895 sequences. (Running on oeis4.)