This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258372 Smallest nonnegative number k not starting or ending with the digit 1 that forms a prime when it is sandwiched between n ones to the left of k and n ones to the right of k. 3
 0, 3, 4, 8, 36, 8, 5, 72, 28, 6, 79, 212, 23, 6, 73, 24, 52, 62, 3, 28, 220, 53, 75, 58, 228, 9, 265, 89, 214, 86, 215, 4, 7, 39, 295, 40, 87, 216, 97, 6, 264, 53, 287, 223, 4, 239, 259, 25, 57, 364, 49, 38, 93, 86, 27, 30, 80, 24, 6, 356, 50, 645, 395, 206 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n = 1 is the only case where a(n) = 0, since for any n > 1, A138148(n) is divisible by A002275(n). No n exists such that a(n) = 2, since any number of the form A100706(n)+A011557(n) is of the form A000533(n)*A002275(n+1) (see comment by Robert Israel in A107123). a(n) = 3 iff n is in A107123. a(n) = 4 iff n is in A107124. If k has an even number of digits and is a multiple of 11, then k is not a term. If k = (10^r+1)(10^m-1)/9 for some m > 0, r >= 0, then k is not a term. If A272232(k) = 0, then k is not a term. - Chai Wah Wu, Nov 08 2019 LINKS Giovanni Resta, Table of n, a(n) for n = 1..1000 EXAMPLE a(1) = 0, because 101 is prime. a(5) = 36, because the smallest x >= 0 such that 11111_x_11111 (where '_' denotes concatenation) is prime is 36. The decimal expansion of that prime is 111113611111. MATHEMATICA Table[k = 0; s = Table[1, {n}]; While[Or[!PrimeQ[FromDigits[s ~Join~ IntegerDigits[k] ~Join~ s]], Or[First@ IntegerDigits@ k == 1, Last@ IntegerDigits@ k == 1]], k++]; k, {n, 64}] (* Michael De Vlieger, May 28 2015 *) PROG (PARI) a000042(n) = (10^n-1)/9 a(n) = my(k=0); while(k==10 || k%10==1 || k\(10^(#Str(k)-1))==1 || !ispseudoprime(eval(Str(a000042(n), k, a000042(n)))), k++); k CROSSREFS Cf. A088281, A090287, A272232. Sequence in context: A155701 A119529 A180629 * A096847 A011993 A286125 Adjacent sequences:  A258369 A258370 A258371 * A258373 A258374 A258375 KEYWORD nonn,base AUTHOR Felix Fröhlich, May 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)